# COT 6405 Introduction to Theory of Algorithms 

## Topic 2. Algorithm Analysis

## Growth rate analysis

- A further abstraction that we use in algorithm analysis is to characterize in terms of growth classes.
- Matrix multiplication time grows as $n^{3}$
- Linear search time grows as $n$
- Insertion sort time grows as $n^{2}$


## Why is growth rate important?

- Actual execution time assuming 1,000,000 basic operations per second.

| Input <br> size | $n$ | $n \lg n$ | $n^{2}$ | $n^{3}$ | $2^{n}$ |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 10 | 0.00001 <br> sec | $3.62 \mathrm{e}-5$ <br> sec | 0.0001 sec | 0.001 sec | $<0.01 \mathrm{sec}$ |
| 100 | 0.0001 sec | $6.52 \mathrm{e}-4$ <br> sec | 0.01 sec | 1 min | $\sim_{\infty}$ centuries |
| 1000 | 0.001 sec | 0.00978 <br> sec | 1 sec | 17.64 min | $\sim_{\infty}$ centuries |
| $10^{4}$ | 0.01 sec | 0.132 sec | 1.692 min | 11.76 days | $\sim_{\infty}$ centuries |

## Growth "classes" of functions

- $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ big oh: upper bound on the growth rate of a function;
- That is, a function belongs to class $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if $\mathrm{g}(\mathrm{n})$ is an upper bound on its growth rate
- $\Omega(\mathrm{g}(\mathrm{n}))$ big omega: lower bound on the growth rate of a function
- $\Theta(\mathrm{g}(\mathrm{n}))$ big theta: exact bound on the growth rate of a function


## Determining the growth class

- A function may belong to multiple growth classes
- For example a function describing the (worst case) number of basic operations of an algorithm might be $O\left(n^{2}\right)$ and $\Omega(\mathrm{n} \lg \mathrm{n})$
- If we find example inputs for which the growth rate is $n^{2}$, then we can also say $\Theta\left(n^{2}\right)$
- If we're able to prove that it never grows faster than nlg n , we can say that it's $\Theta$ (nlgn)


## Little oh and little omega

- $o(g(n))$ little oh: used to denote functions that grow more slowly than $\mathrm{g}(\mathrm{n})$;
- For example, $3 n+o(n)$ indicate that it's $O(n)$ with a small leading constant
- $\omega(\mathrm{g}(\mathrm{n})$ ) little omega: denotes functions that grow faster than $\mathrm{g}(\mathrm{n})$;
- Rarely used but included for completeness


## Precise definitions of big oh and big omega

- $\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n}))$ iff there exist $\mathrm{c}>0$ and $n_{0}>0$ such that $\mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n})$ for all $\mathrm{n} \geq n_{0}$
- $\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n}))$ iff there exist $\mathrm{c}>0$ and $n_{0}>0$ such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{cg}(\mathrm{n})$ for all $\mathrm{n} \geq n_{0}$
- $\Theta(\mathrm{g}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n})) \cap \Omega(\mathrm{g}(\mathrm{n}))$


Figure 3.1 Graphic examples of the $\Theta, O$, and $\Omega$ notations. In each part, the value of $n_{0}$ shown is the minimum possible value; any greater value would also work. (a) $\Theta$-notation bounds a function to within constant factors. We write $f(n)=\Theta(g(n))$ if there exist positive constants $n_{0}, c_{1}$, and $c_{2}$ such that to the right of $n_{0}$, the value of $f(n)$ always lies between $c_{1} g(n)$ and $c_{2} g(n)$ inclusive. (b) $O$ notation gives an upper bound for a function to within a constant factor. We write $f(n)=O(g(n))$ if there are positive constants $n_{0}$ and $c$ such that to the right of $n_{0}$, the value of $f(n)$ always lies on or below $\operatorname{cg}(n)$. (c) $\Omega$-notation gives a lower bound for a function to within a constant factor. We write $f(n)=\Omega(g(n))$ if there are positive constants $n_{0}$ and $c$ such that to the right of $n_{0}$, the value of $f(n)$ always lies on or above $c g(n)$.

## Exercises

- How do we define that a function $f(n)$ has an upper bound $g(n)$, i.e., $f(n)$ is in $O(g(n))$ ?
- How do we define that a function $f(n)$ has an lower bound $g(n)$, i.e., $f(n)$ is in $\Omega(g(n))$ ?
- How do we define that a function $f(n)$ has an tight bound $g(n)$, i.e., $f(n)$ is in $\Theta(g(n))$ ?


## An example of big oh and big

## omega

- How to prove $n^{2}+2 \mathrm{n}+\lg \mathrm{n} \in \mathrm{O}\left(n^{3}\right)$ ?

$$
n^{2}+2 n+\lg n \in O\left(n^{3}\right)
$$

Proof. $\quad n^{2}+2 n+\lg n \leq n^{2}+2 n+n$ as long as $n \geq 1$

$$
=n^{2}+3 n
$$

$$
\leq n^{3}+3 n^{3} \quad(\text { if } n \geq 1)
$$

$$
=4 n^{3}
$$

This satisfies the definition of $\mathrm{O}\left(n^{3}\right)$ with $c=4$ and $n_{0}=1$.

## Exercises (cont'd)

- Ex1: Prove $n^{3}-10 n^{2} \notin \mathrm{O}\left(n^{2}\right)$
- Ex2: Prove $5 n^{3}-3 n^{2}+2 n-6 \in \Theta\left(n^{3}\right)$


## Exercises (cont'd)

$n^{3}-10 n^{2} \notin O\left(n^{2}\right)$
Proof. Otherwise there must exist $c>0$ and $n_{0}>0$ with $n^{3}-10 n^{2} \leq c n^{2}$ for all $n \geq n_{0}$.
But then $n^{3} \leq(c+10) n^{2}$ (for all $n \geq n_{0}$ ) and $n \leq c+10$. The latter is impossible for a given $c$ and all $n \geq n_{0}$.

## Exercises (cont'd)

$5 n^{3}-3 n^{2}+2 n-6 \in \Theta\left(n^{3}\right)$
Proof.
First show that it's in $\mathrm{O}\left(n^{3}\right)$ :

$$
\begin{array}{rlr}
5 n^{3}-3 n^{2}+2 n-6 & \leq 5 n^{3}+2 n & \\
& \leq 7 n^{3} \quad \text { when } n \geq 1
\end{array}
$$

so it's $\mathrm{O}\left(n^{3}\right)$ with $c=7$ and $n_{0}=1$.
Then that it's in $\Omega\left(n^{3}\right)$ :

$$
\begin{aligned}
5 n^{3}-3 n^{2}+2 n-6 & \geq 5 n^{3}-3 n^{2}-6 \\
& \geq \frac{5}{2} n^{3}
\end{aligned}
$$

$$
\text { when } \frac{5}{2} n^{3} \geq 3 n^{2}+6 \text { or } n \geq 2
$$ (good enough)

## Exercises (logarithms and exponents)

- Ex 3: $\ln n \in \Theta(\lg n)$
- Ex4: $e^{n} \notin O\left(n^{t}\right)$ for any fixed t
- Ex5: $e^{n} \notin O\left(e^{t}\right)$ for any fixed t


## Exercises (cont'd)

$\ln n \in \Theta(\lg n)$
Proof. Recall that $\ln n=\log _{e} n$ and $\lg n=\log _{2} n$. Using one of the mathematical identities on the first page, we have

$$
\ln n=\frac{\lg n}{\lg e}
$$

So $c \lg n \leq \ln n \leq c \lg n$, where $c=\frac{1}{\lg e}$, for all $n \geq 1$, which proves both $\mathrm{O}(\lg n)$ and $\Omega(\lg n)$.

## Exercises (cont'd)

- $e^{n} \notin O\left(n^{t}\right)$ for any fixed t
- $e^{n} \notin O\left(e^{t}\right)$ for any fixed t


## Exercises (cont'd)

- $e^{n} \notin O\left(n^{t}\right)$ for any fixed t

Proof: Otherwise there exist $c>0$ and $n_{0}>0$ with

$$
e^{n} \leq c n^{t} \text { for all } n \geq n_{0} .
$$

But then (taking natural log's of both sides) $n \leq \ln c+t \ln n$.
This translates into (divide each side by $\ln n$ ) $\frac{n}{\ln n} \leq \frac{\operatorname{lnc}}{\ln n}+t$.
When $n \geq e, \frac{n}{\ln n} \leq \frac{l n c}{\ln n}+t \leq \ln c+t$ (a constant). On the other hand,

$$
\lim _{n \rightarrow \infty} \frac{n}{\ln n}=\lim _{n \rightarrow \infty} \frac{1}{1 / n}=\infty
$$

## Exercises (cont'd)

- $e^{n} \notin O\left(e^{t}\right)$ for any fixed t

Proof: Otherwise there exist $c>0$ and $n_{0}>0$ with

$$
e^{n} \leq c e^{t} \text { for all } n \geq n_{0} .
$$

But then (taking natural log's of both sides) $n \leq \ln c+t$.
c is a constant, and thus $\mathrm{Inc}+\mathrm{t}$ is a fixed value. It is impossible to find an $n_{0}>0$ so that for all $n \geq n_{0}, \boldsymbol{n}$ is less than or equal to a fixed value.

## Little oh and little omega

- $\mathrm{f}(\mathrm{n}) \in \mathrm{o}(\mathrm{g}(\mathrm{n}))$ iff for all $\mathrm{c}>0$ there exists $n_{0}>0$ such that $0 \leq \mathrm{f}(\mathrm{n})<\mathrm{cg}(\mathrm{n})$ for all $\mathrm{n} \geq n_{0}$
- $\mathrm{f}(\mathrm{n}) \in \omega(\mathrm{g}(\mathrm{n}))$ iff for all $\mathrm{c}>0$ there exists $n_{0}>0$ such that $0 \leq \operatorname{cg}(\mathrm{n})<\mathrm{f}(\mathrm{n})$ for all $\mathrm{n} \geq n_{0}$


# An example of little oh and little 

## omega

- $2^{n} \in o\left(3^{n}\right)$
- Proof: $\lim _{n \rightarrow \infty}(2 / 3)^{n}=0$ and by definition of limit, for any c>0, there is an $n_{0}>0$ with $(2 / 3)^{n}<\mathrm{c}$ for all $n \geq n_{0}$. This means that $2^{n}<c 3^{n}$ for all $n \geq n_{0}$, as desired.


## Limits and notation

- Limits can be helpful in determining the growth rate of functions
- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$ implies $f(n) \in \mathrm{o}(\mathrm{g}(\mathrm{n}))$, that is, $f(n) \notin \Omega(\mathrm{g}(\mathrm{n}))$
$-\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$ implies $f(n) \in \omega(\mathrm{g}(\mathrm{n}))$, that is, $f(n) \notin O(\mathrm{~g}(\mathrm{n}))$
- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=d>0$ implies $f(n) \in \Theta(\mathrm{g}(\mathrm{n}))$


## Limits and notation (cont'd)

- Warning: the converses are not necessarily true. Limits may not exist in some cases where growth classes are well-defined.

