COT 6405 Introduction to Theory of Algorithms

Topic 2. Algorithm Analysis

Growth rate analysis

- A further abstraction that we use in algorithm analysis is to characterize in terms of growth classes.
 - Matrix multiplication time grows as n^3
 - Linear search time grows as n
 - Insertion sort time grows as n^2

Why is growth rate important?

• Actual execution time assuming 1,000,000 basic operations per second.

Input size	n	nlgn	n^2	n^3	2 ⁿ
10	0.00001 sec	3.62e-5 sec	0.0001 sec	0.001 sec	<0.01 sec
100	0.0001 sec	6.52e-4 sec	0.01 sec	1 min	~∞ centuries
1000	0.001 sec	0.00978 sec	1 sec	17.64 min	~∞ centuries
104	0.01 sec	0.132 sec	1.692 min	11.76 days	~∞ centuries

Growth "classes" of functions

- O(g(n)) big oh: upper bound on the growth rate of a function;
 - That is, a function belongs to class O(g(n)) if g(n) is an upper bound on its growth rate
- Ω(g(n)) big omega: lower bound on the growth rate of a function
- O (g(n)) big theta: exact bound on the growth rate of a function

Determining the growth class

- A function may belong to multiple growth classes
 - For example a function describing the (worst case) number of basic operations of an algorithm might be $O(n^2)$ and $\Omega(n \lg n)$
 - If we find example inputs for which the growth rate is n^2 , then we can also say $\Theta(n^2)$
 - If we're able to prove that it never grows faster than nlg n, we can say that it's Θ (nlgn)

Little oh and little omega

- o(g(n)) little oh: used to denote functions that grow more slowly than g(n);
 - For example, 3n + o(n) indicate that it's O(n) with a small leading constant
- ω(g(n)) little omega: denotes functions that grow faster than g(n);
 - Rarely used but included for completeness

Precise definitions of big oh and big omega

- $f(n) \in O(g(n))$ iff there exist c > 0 and $n_0 > 0$ such that $f(n) \le cg(n)$ for all $n \ge n_0$
- $f(n) \in \Omega(g(n))$ iff there exist c > 0 and $n_0 > 0$ such that $f(n) \ge cg(n)$ for all $n \ge n_0$
- $\Theta(g(n) \in O(g(n)) \cap \Omega(g(n))$

Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0, c_1 , and c_2 such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies between f(n), the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or above cg(n).

Exercises

How do we define that a function f(n) has an upper bound g(n), i.e., f(n) is in O(g(n))?

How do we define that a function f(n) has an lower bound g(n), i.e., f(n) is in Ω(g(n))?

How do we define that a function f(n) has an tight bound g(n), i.e., f(n) is in Θ(g(n))?

An example of big oh and big omega • How to prove $n^2 + 2n + \lg n \in O(n^3)$?

$$n^{2} + 2n + \lg n \in O(n^{3})$$
Proof. $n^{2} + 2n + \lg n \leq n^{2} + 2n + n$ as long as $n \geq 1$

$$= n^{2} + 3n$$

$$\leq n^{3} + 3n^{3} \quad (\text{if } n \geq 1)$$

$$= 4n^{3}$$

This satisfies the definition of $O(n^3)$ with c = 4 and $n_0 = 1$.

- Ex1: Prove $n^3 10n^2 \notin O(n^2)$
- Ex2: Prove $5n^3 3n^2 + 2n 6 \in \Theta(n^3)$

 $n^3 - 10n^2 \notin O(n^2)$

Proof. Otherwise there must exist c > 0 and $n_0 > 0$ with $n^3 - 10n^2 \le cn^2$ for all $n \ge n_0$. But then $n^3 \le (c+10)n^2$ (for all $n \ge n_0$) and $n \le c+10$. The latter is impossible for a given c and all $n \ge n_0$.

$$5n^3 - 3n^2 + 2n - 6 \in \Theta(n^3)$$

Proof.

First show that it's in $O(n^3)$:

$$5n^3 - 3n^2 + 2n - 6 \leq 5n^3 + 2n$$

$$\leq 7n^3 \qquad \text{when } n \ge 1$$

so it's $O(n^3)$ with c = 7 and $n_0 = 1$. Then that it's in $\Omega(n^3)$:

$$5n^{3} - 3n^{2} + 2n - 6 \geq 5n^{3} - 3n^{2} - 6$$

$$\geq \frac{5}{2}n^{3} \qquad \text{when } \frac{5}{2}n^{3} \geq 3n^{2} + 6 \text{ or } n \geq 2$$
(good enough)

Exercises (logarithms and exponents)

- Ex 3: $\ln n \in \Theta(\lg n)$
- Ex4: $e^n \notin O(n^t)$ for any fixed t
- Ex5: $e^n \notin O(e^t)$ for any fixed t

 $\ln n \in \Theta(\lg n)$

Proof. Recall that $\ln n = \log_e n$ and $\lg n = \log_2 n$. Using one of the mathematical identities on the first page, we have

$$\ln n = \frac{\lg n}{\lg e}$$

So $c \lg n \le \ln n \le c \lg n$, where $c = \frac{1}{\lg e}$, for all $n \ge 1$, which proves both $O(\lg n)$ and $\Omega(\lg n)$.

- $e^n \notin O(n^t)$ for any fixed t
- $e^n \notin O(e^t)$ for any fixed t

• $e^n \notin O(n^t)$ for any fixed t

Proof: Otherwise there exist c > 0 and $n_0 > 0$ with $e^n \le cn^t$ for all $n \ge n_0$.

But then (taking natural log's of both sides) $n \leq \ln c + t \ln n$.

This translates into (divide each side by lnn) $\frac{n}{lnn} \leq \frac{lnc}{lnn} + t$.

When $n \ge e$, $\frac{n}{lnn} \le \frac{lnc}{lnn} + t \le lnc + t$ (a constant). On the other hand,

$$\lim_{n \to \infty} \frac{n}{\ln n} = \lim_{n \to \infty} \frac{1}{1/n} = \infty$$

• $e^n \notin O(e^t)$ for any fixed t

Proof: Otherwise there exist c > 0 and $n_0 > 0$ with

 $e^n \leq ce^t$ for all $n \geq n_0$.

But then (taking natural log's of both sides) $n \leq \ln c + t$.

c is a constant, and thus lnc + t is a fixed value. It is impossible to find an $n_0 > 0$ so that for all $n \ge n_0$, n is less than or equal to a fixed value.

Little oh and little omega

- $f(n) \in o(g(n))$ iff for all c > 0 there exists $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$
- $f(n) \in \omega(g(n))$ iff for all c > 0 there exists $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$

An example of little oh and little omega

- $2^n \in o(3^n)$
- Proof: $\lim_{n\to\infty} (2/3)^n = 0$ and by definition of limit, for any c > 0, there is an $n_0 > 0$ with $(2/3)^n < c$ for all $n \ge n_0$. This means that $2^n < c3^n$ for all $n \ge n_0$, as desired.

Limits and notation

Limits can be helpful in determining the growth rate of functions

$$-\lim_{n\to\infty}\frac{f(n)}{g(n)} = 0 \text{ implies } f(n) \in o(g(n)), \text{ that}$$

is, $f(n) \notin \Omega(g(n))$

 $-\lim_{n\to\infty}\frac{f(n)}{g(n)} = \infty \text{ implies } f(n) \in \omega(g(n)), \text{ that}$ is, $f(n) \notin O(g(n))$

$$-\lim_{n\to\infty}\frac{f(n)}{g(n)} = d > 0 \text{ implies } f(n) \in \Theta(g(n))$$

Limits and notation (cont'd)

 Warning: the converses are not necessarily true. Limits may not exist in some cases where growth classes are well-defined.